Stationary Waves Questions – OCR A Level Physics Praneel Physics

raineel Philipsics

. Alleel Philips

e atheol. Physics 1. What is a stationary wave? (P)

Working and Answer:

A wave formed by the superposition of two progressive waves with the same frequency and amplitude travelling in opposite directions.

2. Define the terms node and antinode. (P)

Working and Answer:

Node: A point on a stationary wave where the displacement is always zero.

Antinode: A point where the displacement is at maximum.

3. State the condition required for a stationary wave to form. (P)

Working and Answer:

Two waves of equal frequency and amplitude must travel in opposite directions and interfere.

Praineel Philips 4. What is the distance between two adjacent nodes? (P)

Working and Answer:

Distance between nodes =
$$\frac{\lambda}{2}$$

Praineel Physics

ol Philip

P.M.S. 5. What is the fundamental frequency of a string of length L? (P) Praineel Philips

Praineel Philipsics aneel Physics raineel Philipsics Working and Answer:

$$f = \frac{1}{2L} \sqrt{\frac{T}{\mu}}$$

6. Describe how a stationary wave can form on a stretched string. (PP)

Working and Answer:

When a wave reflects at the fixed ends of the string and meets an incoming wave, they interfere constructively and destructively to form a stationary wave.

7. Explain why no energy is transferred in a stationary wave. (PP)

Working and Answer:

Because the two waves are equal and opposite, their energy transfers cancel out, so there is no net energy transfer.

8. In a stationary wave, what is the phase relationship between points on opposite sides of a node? (PP)

Working and Answer:

They are out of phase by 180° or π radians.

9. What is meant by the first harmonic? (PP)

Working and Answer:

It is the lowest frequency at which a stationary wave can form — with one antinode and two nodes (one at each end).

10. Draw and label the first and second harmonics on a string fixed at both ends. (PP)

Working and Answer:

(Diagram to be sketched showing:)

First harmonic: one loop. Second harmonic: two loops.

11. A string of length 1.5 m is fixed at both ends and vibrates at its fundamental frequency. The wave speed is 300 m/s. Calculate the frequency. (PPP)

Working and Answer:

$$f = \frac{v}{2L} = \frac{300}{2 \times 1.5} = 100 \,\mathrm{Hz}$$

		Y	>	Y	Y
12.	Explain how resonance	e relates to the format	ion of stationary v	waves. (PPP)	,5
	Phy.	P.M.	Billig	Phy	el Pina
ainec	R. F. Alfield	Riane	Riaine	Riain	Rial
	Sics	Sics	Sico		50
e e	Working and Answer: Stationary waves form frequency of the media	when the driving free			el Più.
13.	A stationary wave has			nic is this? (PPP)	Rial
	Working and Answer:	Prance		al Rindsi	
211.ee	River	P. Meel	P. I.	2) P. V.	Sel Philips
	Working and Answer:	7.0	S. Car	Prov.	y
	This is the second har	emonic.	RINISIC	RINISI	S Phis
			X	2	

14. What is the wavelength of the third harmonic in a string of length L? (PPP)

Working and Answer:

$$\lambda = \frac{2L}{3}$$

15. Explain how you would use a microwave generator to produce stationary waves. (PPP)

Working and Answer:

Direct microwaves at a metal reflecting plate. Measure the pattern of maxima and minima using a probe to detect points of constructive and destructive interference.

16. A string under tension produces a stationary wave of frequency 200 Hz. If its length is 0.5 m and mass per unit length is $2.5 \times 10^{-3} \text{ kg/m}$, calculate the tension. (PPPP)

$$v = 2Lf = 2 \times 0.5 \times 200 = 200 \,\text{m/s}$$

 $T = \mu v^2 = (2.5 \times 10^{-3}) \times (200)^2 = 100 \,\text{N}$

Praineel. Philips

Praineel Philips

ol Philips

Praincel Philips

17. Describe how stationary sound waves can be demonstrated in a tube. (PPPP)

Working and Answer:

Use a signal generator and loudspeaker at one end of a closed or open tube. Adjust frequency or tube length to observe resonance at nodes and antinodes using a microphone.

18. In a closed pipe, explain why only odd harmonics are present. (PPPP)

Working and Answer:

A closed end is a node and an open end is an antinode. This boundary condition only allows odd multiples of the fundamental frequency.

raineel Pinis ate th 19. A tube closed at one end is 0.85 m long. Calculate the frequency of its first harmonic. P. r. aline el Pi Speed of sound = 340 m/s. (PPPP)

Working and Answer:

ancel Philipsics

Praineel. Philips

$$\lambda = 4L = 4 \times 0.85 = 3.4 \,\mathrm{m}$$
 $f = \frac{v}{\lambda} = \frac{340}{3.4} = 100 \,\mathrm{Hz}$

R. F. O.D.

Produce line

Phis

Praineel Philipsics

Physics

Praineel Philips

Praineel Philis 20. A stretched string has length 0.75 m and supports the third harmonic at 600 Hz. Find the wave speed. (PPPP)

aneel Philipsics

Praincel Philipsics

Working and Answer:
$$\lambda = \frac{2L}{3} = \frac{2 \times 0.75}{3} = 0.5 \text{ m}$$

$$v = f\lambda = 6000 \times 0.5 = 300 \text{ m/s}$$

$$v = f\lambda = 600 \times 0.5 = 300 \,\text{m/s}$$

Praineel Pinnight

21. Describe an experiment to measure the speed of sound in air using stationary waves. (PPPP)

Working and Answer:

Set up a resonance tube partially submerged in water. Use a tuning fork of known frequency and adjust the air column length until loudest sound (resonance) is heard. Use the shortest resonant length to estimate $\lambda/4$, then calculate speed:

$$v = f \lambda$$